
Confounding

A variable that (a) is causally related to the disease under study (or is a proxy for an unknown or unmeasured cause) and (b) is associated with the exposure under study (Kesley)

- □ Any risk factor for a disease is a potential confounder
- Wholly or partially accounts for apparent effect of exposure on disease (either direction)
- □ Occurs in nature, not due to study design or execution

Confounding

Examples of Confounding

- Lighters and Lung Cancer
- Breast Cancer Prevention
 - Breast Feeding
 - □? Parity
 - □ Age at first pregnancy
- Coffee Drinking and Myocardial Infarction

MYOCARDIAL INFARCTION				
COFFEE		Yes	No	
	Yes	90	60	150
	No	60	90	150
		150	150	300

Controlling confounding through stratified analysis

	Smokers			Non-Smokers
	МІ	Νο ΜΙ	МІ	Νο ΜΙ
Coffee	80	40	10	20
No Coffee	20	10	40	80
Totals	100	50	50	100
	OR = 1.0		OR = 1.0	

Controlling Confounding

• A. Controlling by Design

- a) randomization assures same # with and without any potential confounder in both groups
- b) restriction only allow into study if fall into specific groups
- c) matching for every person with a factor in case have person without in controls

B. Controlling by Analysis

- a) stratified analysis make groups homogenous
- b) multivariate analysis most popular

Effect Modification and Interaction

1. Definitions		Ast	pestos	
a) traditional			Yes	No
(statistical)	•			
Risk of Lung Cancer	Smok in	Yes	50	10
b) biological	g	No	5	1
c) public health				
Additive vs.				
Multiplicative (lack of				
one implies the other)				

New thinking about interaction

synergy – parallelism = positive additive interaction = R(AB) – R(B) – R(A) + R(ab)

Bias

- A systematic error in the collection or interpretation of data in an epidemiologic study. (Henneken) Any systematic error in the design, conduct or analysis of a study resulting in a mistaken estimate of an exposure effect. (Schlesselman)
- Found in the design or conduct of study, as opposed to confounding which is found in nature

Types of Bias

1. Recall Bias

Particular problem in case-control studies

2. Diagnosis Bias

□ knowledge of E may influence Dx (e.g. BCPs and PE)

3. Hawthorne Effect

□ General Electric plant in Hawthorne, NY

- \Box Productivity tied to \uparrow (and \downarrow) in lighting
- Called 'placebo' effect in medicine; participants and researchers 'blinded' to actual treatment status

Selection Biases

"a distortion in the estimate of effect resulting from the manner in which subjects are selected for the study" (KKM)

- Detection Bias differential surveillance based on exposure status
 - Surveillance Bias (Schlesselman) BCPs and endometrial CA (Feinstien)
 - Greater in 'milder' diseases picked up on routine visits

Selection Biases

Loss to Follow up (Non-response Bias)

- Cohort Studies
- Compliant participants tend to be healthier
- Healthy Worker Bias
 - Even 23 years after d/c soldiers healthier
 - Caution comparing work cohorts to general population
- Volunteer bias
 - $\Box \downarrow$ smokers, \uparrow exercise,

HRT → CAD Controversy

Observational Studies
 HRT Protective for CAD
 Tended to be studies of volunteer worker cohorts
 Randomized Trials
 Slight increase in risk

Incidence-Prevalence Bias

- Incidence all new cases of disease in a time period
 - Tend to be acute
- Prevalence existing cases of disease at one point in time
 - □ Tend to be chronic
- Cross-sectional studies tend to pick up chronic cases

Direction of Incidence-Prevalence Bias Depends on Population

- Hospital-based study of depression
 - Systematically miss patients who improved (or committed suicide)
- In-patient study of MI patients
 - Systematically miss sudden deaths and those successfully thrombolysed and released
- Studies of schizophrenia
 - Bias can be in either direction. Prognosis fairly bright (60-80% go on to productive lives) if based on outpatient population; fairly grim if based on in-patient population (DSM)

Does public assistance breed dependency?

	1-2 yrs	3-7 yrs	>7 yrs
% who have ever received AFDC	30%	40%	30%
% receiving AFDC at particular time	7%	28%	65%

Long-term recipients more likely to be picked up in a cross-sectional survey

Berkson's Bias: A selection bias due to differing rates of hospitalization

TYPE OF CANCER				
		Endometrial	Other	
BLEEDING	Yes	100	100	200
	No	900	900	1800
		1000	1000	2000

OR = (100)(900) / (100) (900) = 1.0

In the general population, there is no association between vaginal bleeding and endometrial cancer.

Numbers from Hospital-Based Study

TYPE OF CANCER				
VAGINAL BLEEDING		Endometrial	Other	
	Yes	73	85	158
	Νο	90	450	540
		163	535	698

Probability of admission varies: vag bleed = 70%, endometrial CA = 10%, other Cancer = 50%

Now, OR = (73)9450)/(85)(90) = 4.3

Spurious association

How to address selection biases?

- if a, b, c, d represent selection probabilities for the cells in 2x2 table, ensure ad/bc = 1
- Overestimate:
 ad/bc > 1

	D	d
E	а	b
е	С	d